



# Background

- From Bay Street to Yellowknife and back
- Ten years' northern logistics experience
- Designed and managed supply chains for several large scale arctic resource projects
- Currently focussed on arctic development and international logistics projects















### Leading Aviation Transport & Logistics Service Provider

- Leading transportation and logistics service provider in support of commercial applications, peacekeeping missions, military, humanitarian, and other governmental applications
- Getting people and cargo where they need to go on time and under any conditions
- Executes "difficult jobs in difficult places" often performing missions in challenging environments
- For over 20 years in more than 75 countries, SkyLink has delivered assistance and support services in the world's most challenging and remote regions



### Churchill Gateway Development Corp

### Established in June 2003

#### Mission

- To diversify the commodity base
- Increase inbound & outbound traffic
- Ensure sustainability through the northern transportation system

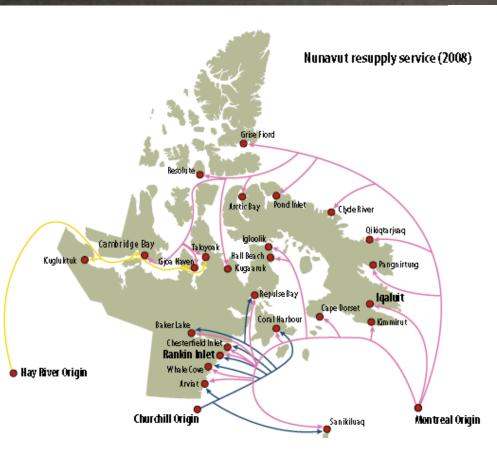
#### Roles

- Marketer of the Corridor
- Facilitates research to identify new commodities

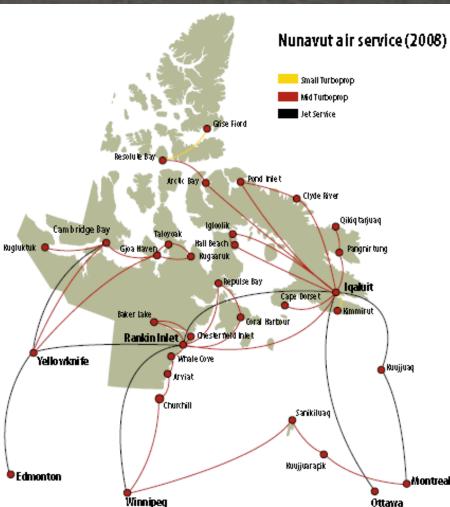




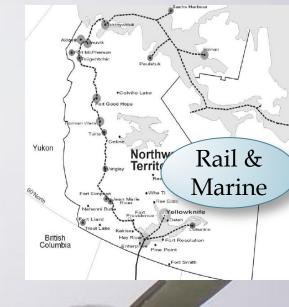


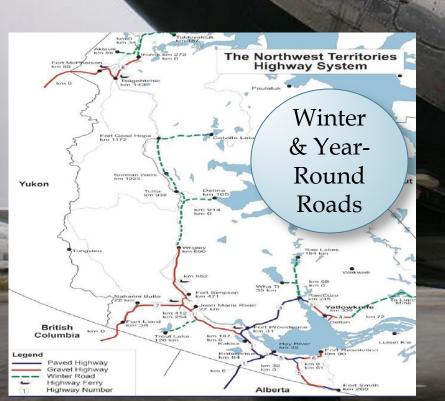

- Limited infrastructure/highway network
- High reliance on air and marine
- New projects often require construction of all supporting infrastructure (rail, road, port)
- Extremely high transportation costs

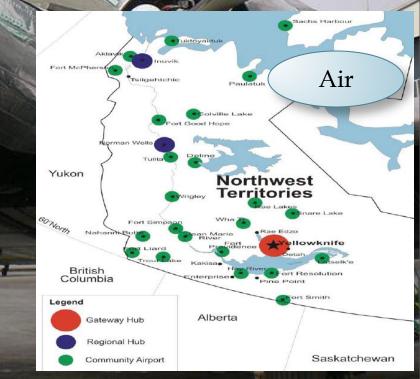


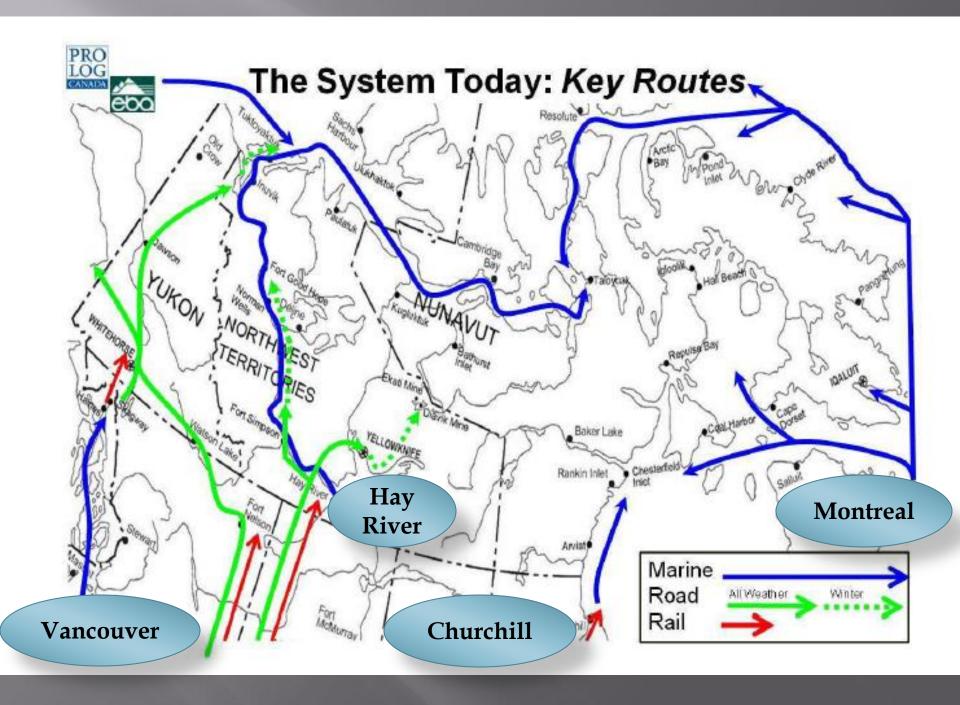



Sources: Golder Associates; The Conference Board of Canada.


# Air & Marine are Critical in the North





Ingirrasiliqta: Let's Get Moving Nunavut Transportation Study




# NWT Transportation

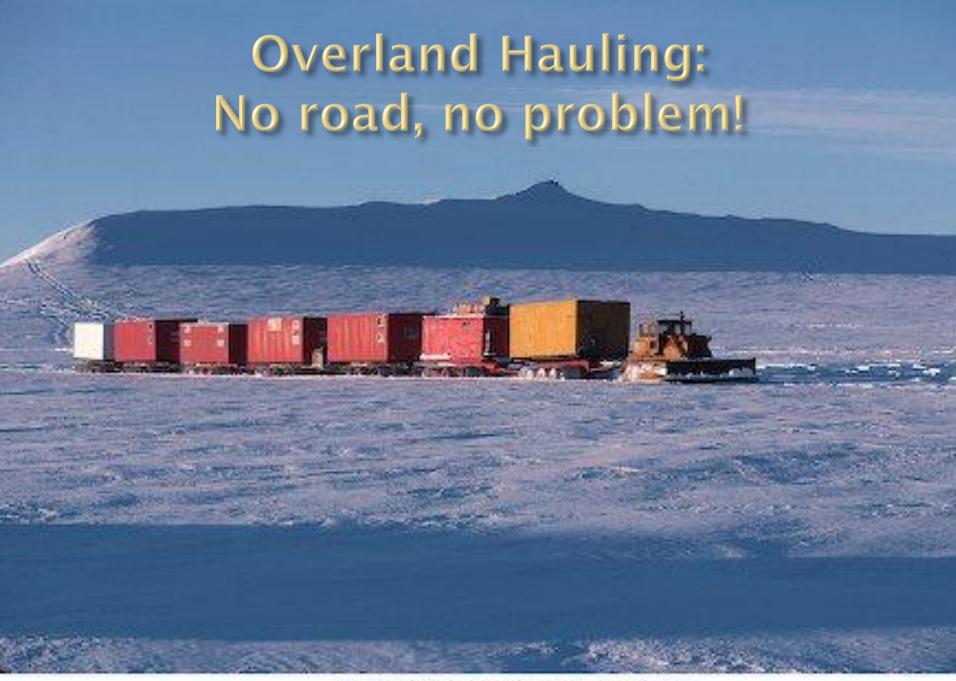













- Limited roads
- Small airports
- Bridges: take a long time to build, expensive

# Sample Required Infrastructure

| Infrastructure<br>Investment<br>Project                              | Investment<br>Capital<br>Cost | Internal<br>Rate of<br>Return | Net<br>Present<br>Value | Benefit<br>To Cost<br>Ratio | Pay<br>Back<br>Period |  |
|----------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------|-----------------------------|-----------------------|--|
| Skagway Mineral Export Terminal                                      | \$81 million                  | 40%                           | \$431 million           | 7:1                         | 3 yrs                 |  |
| Canol Corridor Super Load Road                                       | \$52 million                  | 20.5%                         | \$209 million           | 5.4:1                       | 7 yrs                 |  |
| Klondike Corridor Rail to Whitehorse                                 | \$67 million                  | 17.1%                         | \$174 million           | 4:1                         | 8 yrs                 |  |
| Yukon Hwy 1 & 2 Truck Lane Build-Out                                 | \$82 million                  | 11.3%                         | \$72 million            | 2:1                         | 10 yrs                |  |
| Coronation Gulf Port & Road(BIPAR)                                   | \$127 million                 | 10.6%                         | \$52.5 million          | 1.5:1                       | 8 yrs                 |  |
| NWT Seasonal Overland Road *                                         | \$192 million                 | 9%                            | \$55 million            | 1.3:1                       | 8 yrs                 |  |
| Standard Gauged Rail to Carmacks                                     | \$576 million                 | 8.4%                          | \$237 million           | 1.5:1                       | 12 yrs                |  |
| Iqaluit Sealift Ramp/Staging Site                                    | \$22 million                  | 6.1%                          | \$2.6 million           | 1.2:1                       | 15 yrs                |  |
| Iqaluit Deep Water Port                                              | \$65 million                  | -1.2%                         | -\$34 million           | .44:1                       | 30 yrs                |  |
| Mackenzie Valley All-Weather Hwy                                     | \$1.8 billion                 | -4.9%                         | -\$1.3 billion          | .20 : 1                     | 50+ yrs               |  |
| Nunavut-Manitoba All-Weather Hwy                                     | \$1.3 billion                 | -6.8%                         | -\$1.0 billion          | .15 : 1                     | 50+ yrs               |  |
| * assuming highest risk of warm winter/short season (every 5 years). |                               |                               |                         |                             |                       |  |





# Baker Lake, Nunavut

- Overland haul from Baker Lake to various mining exploration camps up to 200km away
- Haul season runs from early January-mid May
- Between 30-100 trips per year at 25,000lbs each
- Low impact flotation tires





# Challenges

- No snow!
- Packing the trail
- Blizzards wipe out the trail
- Limited offload capabilities
- Speed 10km/h

- Freight weight limitation
- Environmental liability
- 5 months/year operation
- Terrain rough on equipment
- Alternative fly using ice strip





### Winter Roads

- Driver shortages (ramp up for only 2 months)
- Service to locations which may otherwise not be economical to service
- Expensive annual construction and maintenance costs
- Short operating season; climate change means increased variability and uncertainty – this significantly impacts operating plans
- For most of the year, projects serviced by winter roads are limited to air support; high cost of emergency response and poor planning
- Cash flow materials must be purchased at one time vs. throughout the year, and significant storage capacity required at site

# Critical Resupply

- Fuel
- Construction materials
- Tires

- Oversized freight
- Mine resupply materials
- AN, calcium chloride, etc.



# Where's my stuff?



A year's worth of materials arrives in a 60 day window, at -40 and with regular blizzards!

# NWT Winter Roads



| Seasonal Winter/Ice Road System                             |       |  |  |  |
|-------------------------------------------------------------|-------|--|--|--|
| Mackenzie Valley                                            |       |  |  |  |
| Highway 1 (Mackenzie Highway, Wrigley to Fort Good<br>Hope) | 480.0 |  |  |  |
| Deline Access                                               | 106.0 |  |  |  |
| Inuvik-Tuktoyaktuk                                          |       |  |  |  |
| Tuktoyaktuk Access                                          | 194.0 |  |  |  |
| Aklavik Access                                              | 86.0  |  |  |  |
| Gameti                                                      |       |  |  |  |
| Gameti Road                                                 | 100.0 |  |  |  |
| Whati Road                                                  | 145.0 |  |  |  |
| Tibbett Lake to Contwoyto (Private)                         |       |  |  |  |
| Tibbett Lake to Contwoyto                                   | 580.0 |  |  |  |
| Other seasonal access roads                                 |       |  |  |  |
| Nahanni Butte Access                                        | 22.0  |  |  |  |
| Highway 3 Ice Crossing                                      | 13.0  |  |  |  |
| Trout Lake Access                                           | 126.0 |  |  |  |
| Dettah Access                                               | 6.0   |  |  |  |
| Total                                                       | 1,858 |  |  |  |



#### CONSTRUCTION AND MAINTENANCE COSTS FOR WINTER ROADS\*\*

Crossing Type Construction and Maintenance Cost for One Season (\$/km)

Compacted snow road \$35,000 per km

Compacted snow road with an ice cap \$25,000 to 41,000 per km

Floating ice road with overland portages \$22,000 per km

\*\* Areva Kiggavik Project (Nunavut) Environmental Impact Statement - December 2011

This project requires a 103km winter road - \$2.5-\$4million annual cost (January-April hauling)

De Beer's Ontario's Victor Mine: 415km winter road; annual construction cost \$5million, total annual cost \$12million, half the hauling season of the Areva road

# Tibbitt to Contwoyto Winter Road

- Point of origin: 70 km north of Yellowknife, NWT
- Original purpose: supply Lupin Gold Mine at Contwoyto Lake Nunavut Territory
- Length: 600 km to Lupin with 87% of route over lake ice, 15% land portages
- Width: 50 metres on lakes; narrower on portages (12-15 metres)
- Ice thickness: Can support light vehicle loads at 70 cms; increasing to full highway truck loads as ice thickens, often exceeding 107 cms
- Speed limits on ice: Loaded trucks 25 km/hr, with some areas 10 km/hr; empty trucks 60-70 km/hr on "Express Lanes" which are return (southbound lanes) built on larger lakes
- Speed limits on land (portages): 30 km/hr, must slow to 10 km/hr on/off portage
- Number of Portages: 64 located along the route,
- Maintenance Camps: 3 camps that can accommodate 49 personnel each are located at Dome Lake, Lockhart Lake and Lac de Gras
- Manager: Joint Venture Management Committee (JVMC) comprised of BHP Billiton Diamonds Inc., Diavik Diamond Mines Inc. and DeBeers Canada Inc.
- Road Constructor: Nuna Logistics Ltd (main route), RTL Robinson Enterprises Ltd. (secondary route) contracted by the JVMC
- Engineering: TetraTech (previously EBA Engineering)



# Tibbitt to Contwoyto Winter Road Annual Volumes

|          | Year | <b>Operating Period</b> | Total Tonnes<br>Hauled<br>(northbound) | Number of<br>Truckloads<br>(northbound) | Tonnes per<br>Northbound<br>Truckload | Number of<br>Backhauls<br>(southbound) |
|----------|------|-------------------------|----------------------------------------|-----------------------------------------|---------------------------------------|----------------------------------------|
| <b>1</b> | 2001 | Feb 1 - Apr 13          | 245,586                                | 7,981                                   | 30.77                                 | 201                                    |
|          | 2002 | Jan 26 - Apr 16         | 256,915                                | 7,735                                   | 33.21                                 | 433                                    |
|          | 2003 | Feb 1 – Apr 2           | 198,818                                | 5,243                                   | 37.92                                 | 883                                    |
|          | 2004 | Jan 28 - Mar 31         | 179,144                                | 5,091                                   | 35.19                                 | 165                                    |
|          | 2005 | Jan 26 - Apr 5          | 252,533                                | 7,607                                   | 33.20                                 | 243                                    |
|          | 2006 | Feb 5 - Mar 26*         | 177,674                                | 6,841                                   | 25.97                                 | 469                                    |
| 8        | 2007 | Jan 27 - Apr 9          | 330,002                                | 10,922                                  | 30.21                                 | 818                                    |
|          | 2008 | Jan 29 - Mar 31         | 245,585                                | 7,484                                   | 32.81                                 | 890                                    |
|          | 2009 | Feb 1 – Mar 22          | 173,195                                | 4,847                                   | 35.73                                 | 530                                    |
|          | 2010 | Feb 4 - March 21        | 120,020                                | 3,508                                   | 34.21                                 | 429                                    |
|          | 2011 | Jan 28 - March 31       | 239,000                                | 6,832                                   | 34.98                                 | 530                                    |

\*Road shut down early due to thin ice; approx 1,200 loads flown to mines in summer/fall of 2006

# The cost of an early thaw

- Russian aircraft mobilized due to limited local lift capacity
- Equivalent of 1,200 truck loads flown to the NWT diamond mines
- Significantly higher cost
  - Mi-26 @\$20,000/hr+ fuel, Hercules @ \$12,000/hr+fuel
- 24-7 operation
- "One more year like this and we would have to evaluate shutting down"



# The cost of trying to get an early start

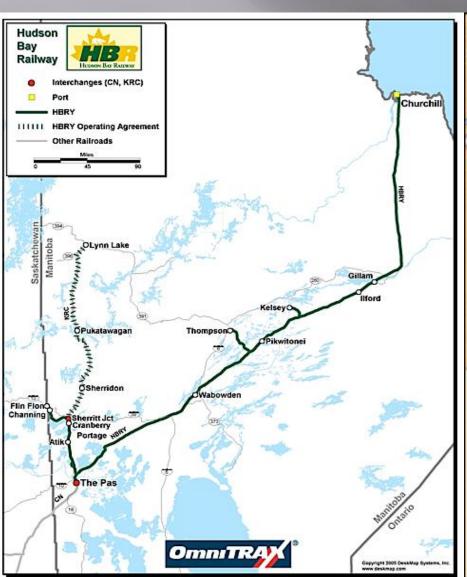


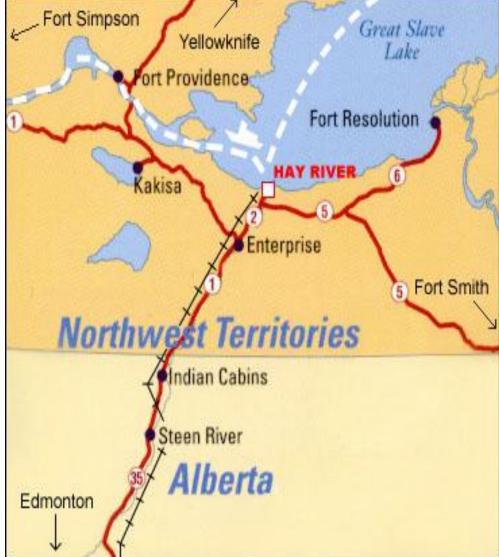
# Extending the Season



- Light loads early;
- Flooding winter roads to thicken ice structure;
- Monitoring ice sheet thickness with ground penetrating radar;
- Plowing snow off the road enhances the freezing effect (snow has an insulating effect); and
- Restricting hauling to hours of darkness towards the end of the season when the ice sheet is stronger.




### All-Weather Roads

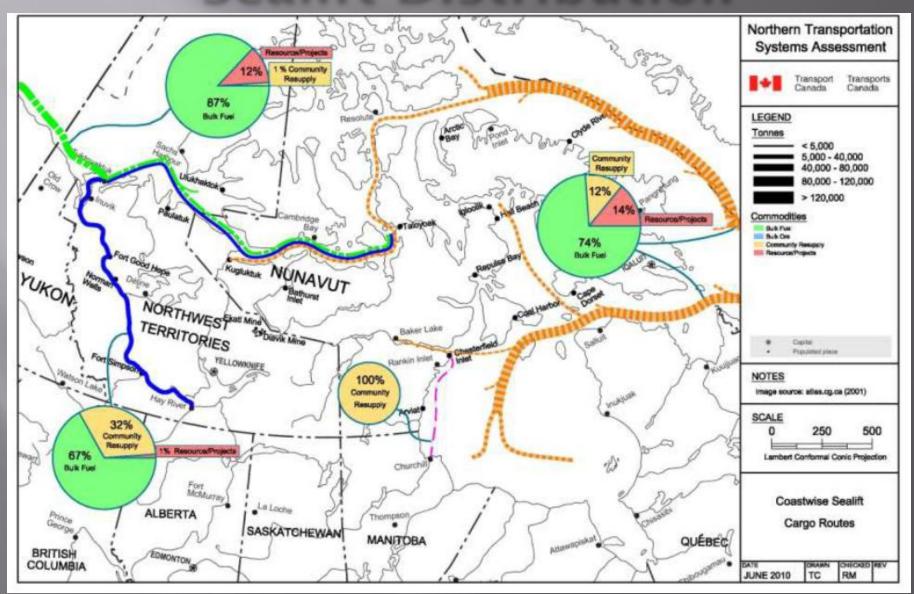

- 108 KM road from Baker Lake to Meadowbank is the longest road in Nunavut
- Estimated cost of \$100,000,000
- Dedicated road expensive to operate and maintain
- Increased flexibility and longer hauling window than winter roads, but similar challenges in Nunavut where marine is primary resupply source
- Environmental and permitting considerations





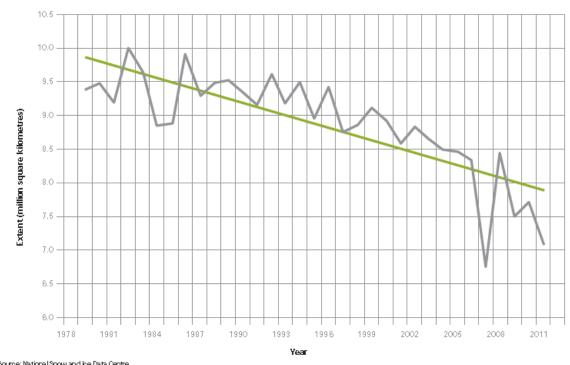
## Rail











- Yukon has access to 3 ports that are ice-free year round
- Many NWT and all Nunavut communities rely entirely on annual sealift for fuel and annual resupply materials
- Arctic communities are serviced from the following ports:
  - Churchill, Manitoba
  - Hay River, NWT
  - Montreal, Quebec (Valleyfield, Becancour)

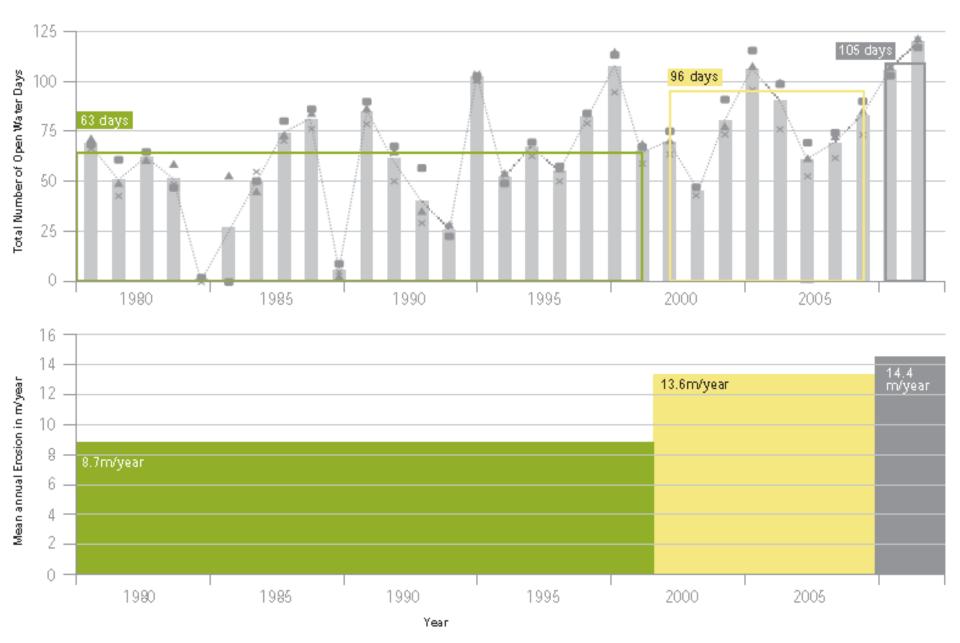
## Sealift Distribution



# Changes in Sea Ice






Source: National Snow and Ide Data Centre

United Nations Framework Convention on Climate Change.

| Route              | Length (km) | % accessible, 2000-2014 | % accessible, 2045-2059 | Accessibility change (%) relative to baseline | Transit time (days), 2045-2059 |
|--------------------|-------------|-------------------------|-------------------------|-----------------------------------------------|--------------------------------|
| Northwest Passage  | 9,324       | 63%                     | 8 2%                    | + 30%                                         | •                              |
| Northern Sea Route | 5,169       | 86%                     | 100%                    | +16%                                          | 11                             |
| 'North Pole' Route | 6,960       | 64%                     | 100%                    | + 56%                                         | 16                             |
| 'A rotic Bridge'   | 7,135       | 100%                    | 100%                    | + 0%                                          | 15                             |

Source: Reprinted by per mission from Macmillan Publishers Ltd (Nature Climate Change) "Divergent long-term trajectories of human access to the Arctic", Copyright 2011 \*\*

Figure 5. Increase in average number of ice-free days in the Beaufort Sea compared to rates of coastal erosion

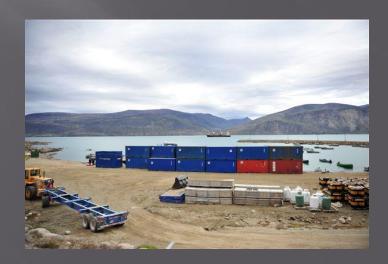


Source: National Snow and Ice Data Center - courtesy of Irlina Overeem, University of Colorado<sup>19</sup>

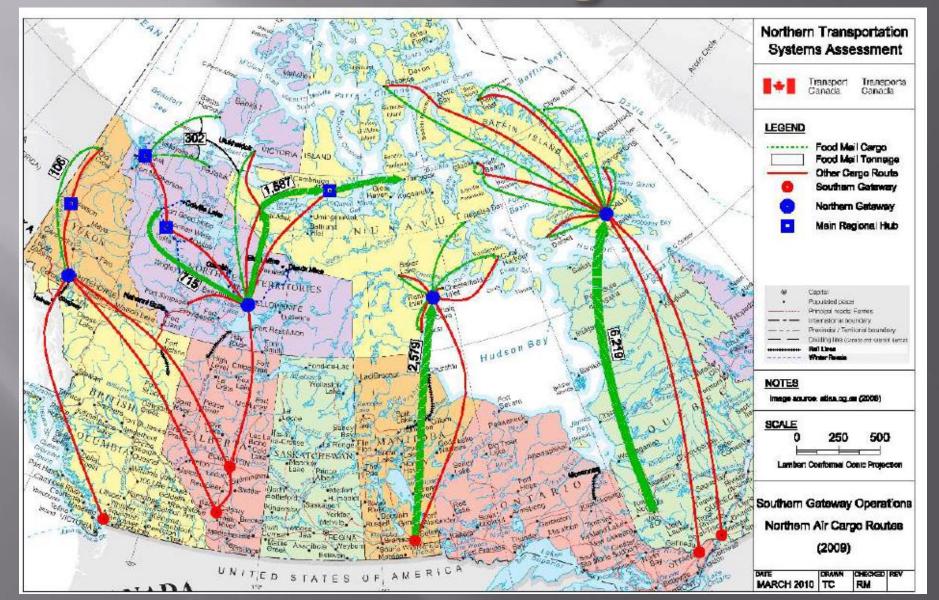




# Iqaluit Marine Offload




# Limited offloading facilities










### Northern Air Cargo Routes







# Challenging Landings



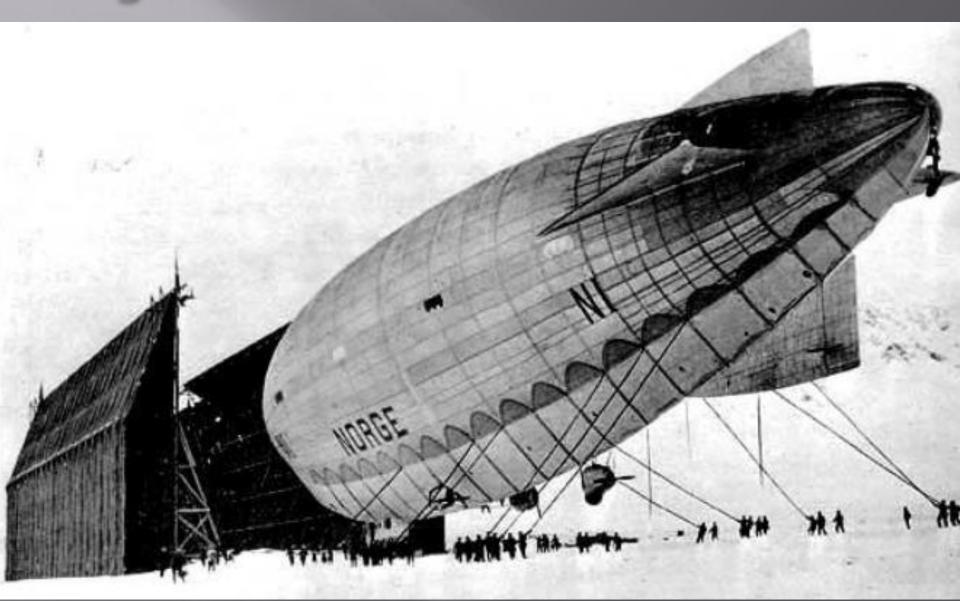
### Air Freight: Resource Industry

# Operating Mines – Northern Canada Air Cargo Re-supply<sup>14</sup>

| Mine                                  | -<br>Point of Origin | -<br>Annual Air Cargo<br>(tonnes) |
|---------------------------------------|----------------------|-----------------------------------|
| Diavik (diamonds), NWT                | Yellowknife          | 2,700                             |
| Snap Lake (diamonds), NWT             | Yellowknife          | 1,900                             |
| Ekati (diamonds), NWT <sup>15</sup>   | Yellowknife          | 3,476                             |
| Meadowbank (gold), Nunavut            | Thompson, Man.       | 1,264                             |
| Cantung (tungsten), NWT <sup>16</sup> |                      | Nil                               |
| Wolverine (copper, zinc), Yukon       |                      | nil                               |
| Minto (copper), Yukon <sup>17</sup>   | Whitehorse           | 260                               |

### Northern Air Cargo Flows (tonnes)

|                |                  |           | 2009      |         | Fore        | ecast  |
|----------------|------------------|-----------|-----------|---------|-------------|--------|
| Gateway        | Destination      | Food Mail | Gen Cargo | Total   | 2020        | 2030   |
| Nunavut        |                  |           |           |         |             |        |
| Iqaluit        | Baffin           | 6,219     | 4,146     | 10,365  | 15,952      | 23,622 |
| Rankin Inlet   | Kivalliq         | 2,579     | 1,719     | 4,298   | 6,615       | 9,795  |
| Yellowknife    | Kitikmeot        | 1,587     | 1,058     | 2,645   | 4,071       | 6,028  |
|                |                  | 10,385    | 6,923     | 17,308  | 23,638      | 39,445 |
| NWT            |                  |           |           |         |             |        |
| Yellowknife &  | Beaufort-Delta   | 302       |           | _       | -           |        |
| Inuvik         |                  |           | 7         |         | A Transport |        |
| Yellowknife    | Sahtu            | 715       |           |         | FIRST AIR   | 10     |
| Yellowknife    | Great Slave Lake | 3         |           | 13-11-1 | 10 =        |        |
| Fort Simpson & | Deh Cho          | 0         |           |         |             |        |
| Hay River      |                  |           |           |         |             |        |
|                |                  | 1,020     | 680       | 1,700   | 2,353       | 3,162  |
| Yukon          |                  |           |           |         |             |        |
| Whitehorse     | Yukon            | 106       | 950       | 1,056   | 1,178       | 1,301  |


### In the Arctic....

Everything old is new again





### Logistics solutions for the future?



### Heavy Airlift

### Load / Lift Capacity

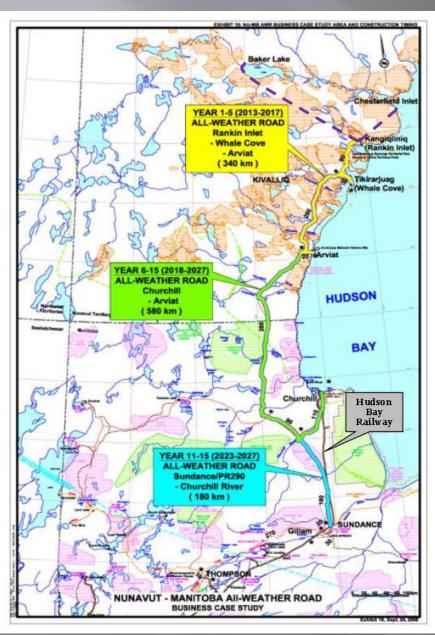
- Volume rich lift (does not volume out).
- Winches vertical loads, larger than any other air vehicle can do.
- Loiter, precision hover and craneage of heavy loads capabilities.
- Roll on / roll off loading and unloading.

'aerospace' structure.

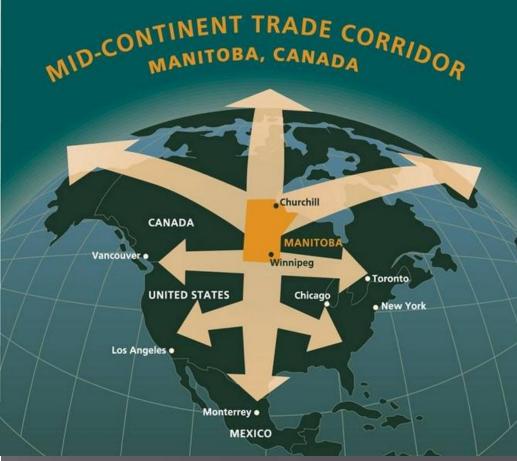
- Primary load area developed as an 'industrial' rather than
  - Up to **105 knots airspeed** with high reliability.
  - -50C to +55C temperatures, wind speeds of up to 50 knots.

#### Law Cost

- Low fuel consumption / gas emissions.
- Low asset cost and ongoing operating and maintenance requirements.


#### Rapid Deployment

- Rapidly deployable, into extreme environments with minimal support infrastructure.
- Bypassing traditional road/sea infrastructure resulting in substantial time savings.
- True "point-to-point" transportation of machinery / personnel to industrial fields, avoiding choke points and dangers at close to fixed wing aircraft time.
- Can launch, land, load from gravel airstrips, water, or snow / ice surfaces.
- No infrastructure upgrades nor specialist handling equipment required.


Reliable

## The Future?





### Manitoba Corridor



Arctic Bridge Between Churchill and Murmansk



Sources: Government of Manitoba; The Conference Board of Canada.

#### Distance to European Ports, Port of Churchill vs. Port of Thunder Bay (nautical miles)


|           | Distance from<br>Churchill | Distance from<br>Thunder Bay | S avings in<br>distance |
|-----------|----------------------------|------------------------------|-------------------------|
| Rotterdam | 3,344                      | 4,325                        | 981                     |
| Murmansk  | 3,763                      | 5,210                        | 1,447                   |
| Liverpool | 2,992                      | 4,035                        | 1,043                   |
| Oslo      | 3,370                      | 5,368                        | 1,998                   |

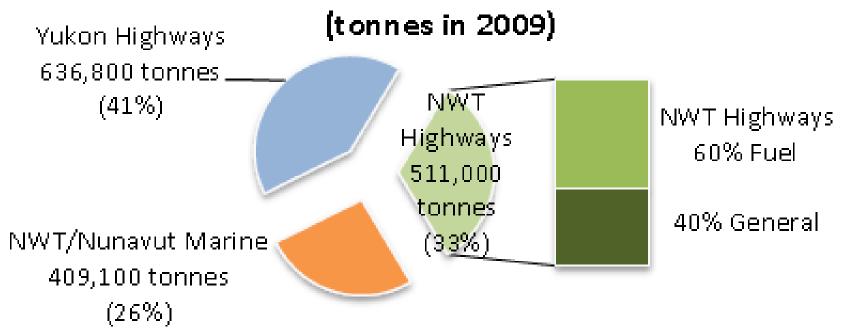
Source: Churchill Gateway Development Corporation.



## Mackenzie Valley Highway

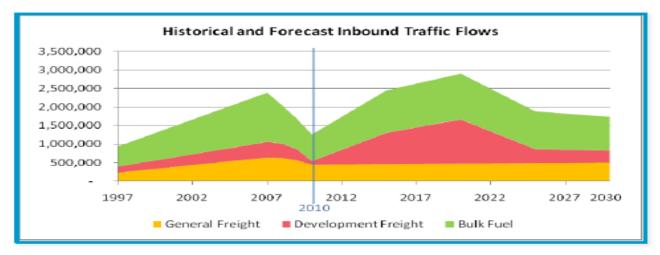





The Northern Transportation System Assessment, January 2011

Northern Transportation Systems Demand (Tonnes in 2009)

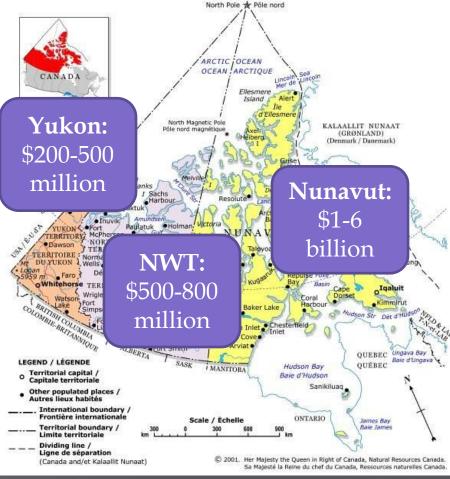
| Northern<br>Transportation<br>System | Community<br>Resupply<br>General | Resource<br>Projects<br>General | Bulk<br>Fuel<br>Supply | Total<br>Inbound<br>Tonnes |
|--------------------------------------|----------------------------------|---------------------------------|------------------------|----------------------------|
| Eastern Sealift                      | 54,500                           | 39,100                          | 139,900                | 233,500                    |
| Western Sealift                      | 3,700                            | 3,800                           | 59,000                 | 66,500                     |
| Mackenzie River                      | 8,900                            | 3,900                           | 26,200                 | 39,000                     |
| Hudson Bay                           | 4,300                            | 27,300                          | 38,500                 | 70,100                     |
| Inside Passage*                      | 59,400                           | 24,100                          | 64,000                 | 147,500                    |
| Yukon Highways                       | 371,000                          | 143,900                         | 121,900                | 636,800                    |
| NWT Highways                         | 163,000                          | 48,000                          | 300,000                | 511,000                    |
| TOTAL INBOUND                        | 605,400                          | 266,000                         | 685,500                | 1,556,900                  |
| Northern Air Cargo                   |                                  |                                 |                        | 20,000                     |
| Resource Exports                     |                                  |                                 |                        | 54,000                     |
| TOTAL TONNES                         |                                  |                                 |                        | 1,630,900                  |


<sup>\*</sup> Inside Passage Tonnes are included in Yukon Highways Tonnes and excluded from Total Tonnes.

### Current Inbound Freight Traffic Split



### Future Northern Cargo Trends





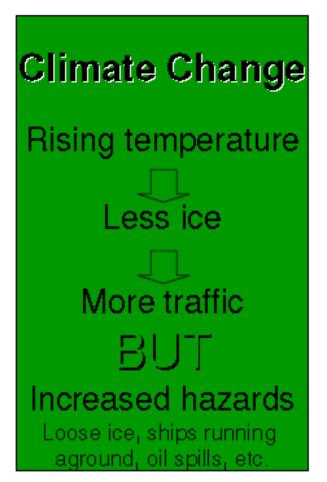




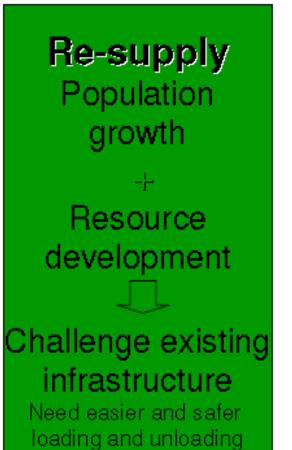
# Exploration Spending & Mine Construction Costs








### The Mary River Project




4. Infrastructure

## Northern Transportation







